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Chapter 0

Preliminaries from Measure Theory

0.1. Algebras and σ-Algebras

Throughout this section, we use X to denote an arbitrary set. If A is a subset
of X , we write Ac = X\A for the set-complement of A relative to X . We also define
P (X ) to be the power set of X , that is, the set formed by all subsets of X .

Definition 1 (Algebra and σ-algebra). Let A ⊆P (X ) be a collection of subsets of
X . Then A is called an algebra over X if it satisfies:

(i) (Contains empty set) We have ;∈A ;
(ii) (Closed under complements) If A ∈A , then Ac ∈A ;

(iii) (Closed under finite unions) If A1, . . . , Ak ∈A , then A1 ∪ . . .∪ Ak ∈A .
Moreover, A is called a σ-algebra over X if in addition to being an algebra, it also
satisfies:

(iv) (Closed under countable unions) If {An}n∈I ⊆A , I ⊆N, is a countable family of
sets in A , then

⋃
n∈I An ∈A .

If A on X is an algebra (or a σ-algebra) then a subset of X is called A -
measurable if it is an element of the σ-algebra A .

Here are some first examples of algebras over a set X .

Example 2 (Examples of algebras).
• The collection of subsets of X which are either finite or co-finite (meaning that

their complement is fininte) is an algebra.
• The collection of all finite unions of intervals of the form (−∞,b], (a,b], (a,∞),

for a,b ∈R, is an algebra on the real numbers R.

Note that any σ-algebra is an algebra but the converse is not true. Indeed, the
second algebra provided in Example 2 above is not a σ-algebra.
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4 CHAPTER 0. PRELIMINARIES FROM MEASURE THEORY

A σ-algebra is also closed under countable intersections, that is, given a σ-
algebra A and a countable family of sets {An}n∈I ⊆A , I ⊆N, we have that

⋂
n∈I An ∈

A . This follows from De Morgan’s law (
⋂

n∈I An)c =⋃
n∈I Ac

n ∈A , and property (iv).
Here are some basic examples of σ-algebras.

Example 3 (Examples of σ-algebras).
• P (X ) and {;, X } are σ-algebras.
• For any subset A ⊆ X , A = {;, A, X\A, X } is a σ-algebra.
• The collection of subsets of X which are either countable or co-countable

(meaning that their complement is countable) is a σ-algebra.
• Given two σ-algebras A1,A2 ⊆P (X ), we have that A1∩A2 is also a σ-algebra.

More generally, for any (possibly uncountable) family of σ-algebras Ai ⊆P (X ),
i ∈ I, the intersection

⋂
n∈I An is a σ-algebra.

There is a very natural way of generating σ-algebras from a collection of subsets:

Definition 4 (Generated σ-algebra). Let F ⊆ P (X ) be a collection of subsets of
X . The smallest σ-algebra containing F , that is, the intersection of all σ-algebras
containing F is called the σ-algebra generated by F , and is usually denoted by
σ(F ).

There are many families of subsets that generate useful σ-algebra, we will cover
in this section some of them. Here are two simple examples of generated σ-algebras.

Example 5 (Examples of σ-algebras generated by collection of subsets).
• The σ-algebra on X consisting of all countable and co-countable subsets of X

is the σ-algebra generated by the collection of all singletons of X .
• Let X1, X2 be two sets, and A1,A2 be σ-algebras on X1 and X2 respectively.

We define A1 ⊗A2 to be the σ-algebra on the Cartesian product X = X1 × X2
generated by all the subsets of the form A1 × A2 ⊆ X , where A1 ∈ A1 and
A2 ∈A2. Note that A1 ⊗A2 is called the product σ-algebra generated by A1
and A2

A special case of σ-algebras generated by a collection of subsets are the σ-
algebras generated by the open subsets with respect to some topology. This type
of σ-algebra will be one of our main focus in Ergodic Theory as we will study the
dynamical properties of dynamical systems on topological spaces such as the torus.

Definition 6 (Borel σ-algebra). Let (X ,τ) be a topological space. The σ-algebra
generated by the open subsets of X is called the Borel σ-algebra on X and we usually
denote it by BX , or simply B. Its elements are called the Borel measurable subset
of X .

We give here two examples of such σ-algebras that will be used latter in this
section.

Example 7 (Examples of Borel σ-algebras).
• Consider Rd endowed with its usual topology. Then, the Borel-σ-algebra on
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Rd is the σ-algebra generated by the open balls Br(x)= {y ∈Rd : |x−y| < r}. It
contains all closed subsets of Rd, but not all subsets of Rd.

• Consider a finite set Σ, usually called the alphabet, containing n elements,
usually refereed to as the letters of Σ. The infinite product ΣN can then be
identified with the set of all infinite strings in these letters. Observe that
the natural topology on Σ is the discrete topology, whose basis consists of
singletons, i.e., sets consisting of individual letters. The Borel σ-algebra on
ΣN is the σ-algebra generated by the algebra of cylinder sets, where cylinder
sets consist of the open sets of x ∈ΣN (with respect to the product topology of
ΣN) that have finitely many coordinates fixed.

We now define the notion of monotone class, which gives rise to another charac-
terization of σ-algebras.

Definition 8 (Monotone class). A monotone class M ⊆ P (X ) is a collection of
subsets of X having the following properties:

(i) if A1, A2, · · · ∈M and A1 ⊆ A2 ⊆ . . . , then
⋃∞

n=1 An ∈M

(ii) if B1,B2, · · · ∈M and B1 ⊇ B2 ⊇ . . . , then
⋂∞

n=1 Bn ∈M

Note that both P (X ) and {;, X } are monotone classes. Thus any collection of
subsets is contained in a monotone class. The following theorem gives an alternative
characterization of the σ-algebra generated by an algebra.

Theorem 9 (Monotone Class Theorem). Let A ⊆P (X ) be an algebra and let S be
the smallest monotone class containing A . Then we have σ(A )=S .

0.2. Measures and Measure spaces

A measure is a function that assigns a non-negative number to certain subsets of
a set X in a manner consistent with the algebra of Boolean set operations, includ-
ing unions, intersections, and complements. Measures provide the mathematical
foundation for modelling quantities such as mass, length, area, volume, and, most
importantly, probability. The subsets to which a measure can be assigned are called
the measurable sets.

Definition 10 (Measurable space and measurable set). An ordered pair (X ,A ),
where X is a set and A ⊆ P (X ) is a σ-algebra, is called a measurable space, and
any set A ∈A is called a measurable set.

Definition 11 (Measure and measure space). A measure µ on a measurable space
(X ,A ) is a set function µ : A → [0,∞] such that:

(i) µ(;)= 0;
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(ii) For any countable (or finite) sequence of pairwise disjoint sets (An)n∈N ∈A ,
we have

µ

( ∞⋃
n=1

An

)
=

∞∑
n=1

µ(An). (σ-additivity)

If (X ,A ) measurable space and µ is a measure on it then the triple (X ,A ,µ) is
called a measure space.

The main structure of interest in classical ergodic theory is that of a probability
space.

Definition 12 (finite and σ-finite measure space, probability space). A measure
space (X ,A ,µ) is said to be a finite measure space if µ satisfies µ(X )<∞, and if in
addition µ(X )= 1, (X ,A ,µ) is called a probability space.
(X ,A ,µ) is called a σ-finite measure space if X is a countable union of elements of
A of finite measure.

We now state different useful properties about measures.

Proposition 13. Given a measure space (X ,A ,µ), we have the following properties:
(i) (Finite unions) For any positive integer n and disjoint sets A1, A2, . . . , An ∈A ,

using the fact that µ(;)= 0, we have

µ

(
n⋃

k=1
Ak

)
=

n∑
k=1

µ(Ak).

(ii) (Monotonicity) If A,B ∈A and A ⊆ B, then µ(A)⩽µ(B).
(iii) (Countable subadditivity) For any countable family of sets {An}n∈I ⊆A , I ⊆N,

not necessarily disjoint, we have

µ

( ∞⋃
n=1

An

)
⩽

∞∑
n=1

µ(An).

(iv) (Continuity) If A1 ⊆ A2 ⊆ ·· · ∈A , then

lim
k→∞

µ(Ak)=µ

( ∞⋃
n=1

An

)
,

and if A1 ⊇ A2 ⊇ ·· · ∈A , and µ(A1)<∞, then

lim
k→∞

µ(Ak)=µ

( ∞⋂
n=1

An

)
.

Throughout the course we will extensively use the notion of "almost everywhere"
(or "for almost every"). In short, a property holds almost everywhere on a set X
if the subsets of elements for which it doesn’t hold has zero measure. During the
course, as we deal with probability measures, one way of seeing this notion is as
follows: If we pick at random an element x ∈ X , then the probability that x satisfies
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the given property is 1. Here is the formal definition.

Definition 14 (Almost everywhere). Let (X ,A ,µ) be a measure space. We say that
a property holds µ-almost everywhere on X (sometimes abbreviated as µ-a.e.) if
it the set of elements for which the property does not hold has zero measure with
respect to µ.

Examples
Below, we provide several examples of important measure spaces, many of which
will appear again as we delve deeper into ergodic theory throughout the course.

Null measure. Let X be a non-empty set, let A be a σ-algebra on X and define
µ(A)= 0, ∀A ∈A . Then (X ,A ,µ) is a measure space and µ is refereed to as the null
measure on (X ,A ).

Counting measure. Let X be a set, and for any A ∈ P (X ) define µ(A) = |A|,
where |A| denotes the cardinality of A. Then (X ,P (X ),µ) is a measure space and µ

is called the counting measure on X . This measure is finite when X is finite, it is
σ-finite when X is countable, and it is not σ-finite when X is uncountable.

Dirac δ-measure. Let (X ,A ) be a measurable space, and x ∈ X . Then we define
the Dirac measure δx by

δx(A)=
{

1 if x ∈ A,
0 if x ∉ A.

The Dirac measure is a probability measure, and it represents the almost sure
outcome x in the measurable space.

Restriction of a measure. Let (X ,A ,µ) be a measure space and A ∈ A . We
define the measure ν by ν(B) = µ(B∩ A),∀B ∈ A , to be the restriction of µ to A.
Then (X ,A ,ν) is measure space and ν(B)= 0, ∀B ∈A with B ⊆ X\A.

Conditional measure. Let (X ,A ,µ) be a measure space and A ∈A with µ(A)> 0.
We define for every B ∈A ,

µ(B|A)= µ(A∩B)
µ(A)

.

The set function B 7→µ(B|A) is a measure on A called the conditional measure with
respect to A. If µ is a finite measure (resp. probability measure) then the conditional
measure with respect to A is also a finite measure (resp. probability measure).
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Product measure. Let (X1,A1,µ1) and (X2,A2,µ2) be two measure spaces. Let
A =A1 ⊗A2 be the product σ-algebra on the product space X = X1 × X2. We define
the product measure µ=µ1 ×µ2 (also sometimes denoted µ1 ⊗µ2) to be the unique
measure on the measurable space (X ,A ) which satisfies µ(A1× A2)=µ1(A1)µ2(A2)
for every A1 ∈A1 and A2 ∈A2.

Probability measure on ΣN. Let X =ΣN be the set of all infinite strings whose
letters are in the finite alphabet Σ, and let A the Borel σ-algebra on ΣN as previously
introduced in Example 7. Let µ0 be any probability measure on Σ. We define µ=µN0
to be the product measure on ΣN, which is the unique measure satisfying for every
cylinder set I,

µ(I)= ∏
i∈F

µ0({xi})

where F is the finite set of the indices of the fixed coordinated of I.

Borel measure. In order to define Borel measures, we recall two definitions from
topology.

Definition 15 (Hausdorff topological space). A topological space X is Hausdorff
if for any distinct points x, y ∈ X , there exists open neighborhoods U ,V of x and y
respectively such that U and V are disjoint.

Definition 16 (locally compact topological space). A topological space X is locally
compact if every x ∈ X has a compact neighborhood.

Now, let X be a locally compact Hausdorff topological space and B the Borel σ-
algebra defined on X . Then, any measure µ defined on B is called a Borel measure.
If µ(X )= 1, we say that µ is a Borel probability measure.

Radon measure. Let X be a locally compact Hausdorff topological space, B the
Borel σ-algebra defined on X , and µ a finite Borel measure on B. If in addition
µ is tight, in the sense that for all ε > 0 there exists a compact set K ⊆ X such
that µ(X\K) < ε (or equivalently µ(K) ⩾ µ(X )− ε), µ is called a Radon measure.
These conditions guarantee that the measure is compatible in some sense with the
topology of the space. An useful property of the Radon measure is that it makes the
map f 7→ ∫

f dµ, where f ∈ L1(X ), continuous (recalls about integration theory are
given in the next section). The following measures are examples of Radon measures:
the Lebesgue measure on an Euclidean space, the Haar measure on any locally
compact topological group, the Dirac measure on any topological space.

Lebesgue measure. The Lebesgue measure is the unique measure µ on the
Borel-σ-algebra BR such that for every interval I ⊆R, the measure µ(I) is the length
of I.
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We observe that the restriction of µ to the Borel-σ-algebra B[0,1] of subsets of [0,1]
is the so called uniform distribution from probability theory.
We can generalize this idea to higher dimensions. Indeed, for the lower dimensions
n = 1,2, the Lebesgue measure coincides with the notions of area and volume. For
higher dimensions, it is also called n-dimensional volume.
More generally, if we consider the measurable space (Rn,BRn), the Lebesgue mea-
sure µ on BRn is the unique measure such that if A is a cartesian product of intervals
I1 ×·· ·× In, then A is Lebesgue measurable (in the sense that we can attribute a
Lebesgue measure to A) and µ(A) = ∏n

i=1 l(I i), where l denotes the length of the
interval I i, i.e, l is the Lebesgue measure in one dimension.
We list, without proof, some of the properties of the Lebesgue measure on BRn :

(i) (translation invariance) If A ⊆Rn is Lebesgue measurable, and x ∈Rn, then
A + x = {y ∈ Rn : y+ x ∈ A} is Lebesgue measurable and µ(A + x) = µ(A). In
particular, A ⊆Rn is Lebesgue measurable if, and only if, all translates of A is
Lebesgue measurable.

(ii) (dilation and scaling) Let c > 0, A ⊆ Rn be Lebesgue measurable, and let
cA = {cy ∈Rn : y ∈ A}, then cA is Lebesgue measurable and µ(cA)= cnµ(A).

(iii) More generally, if T is a linear transformation and A is a Lebesgue measurable
subset of Rn, then T(A) is a Lebesgue measurable set of measure |det(T)|µ(A).

(iv) Finite or countable sets are Lebesgue measurable and have Lebesgue measure
0, and there exist uncountable Lebesgue measurable sets of measure 0. As an
example, we can consider the Cantor set (when n = 1). Moreover, there exists
sets which are not Lebesgue measurable.

Finally, note that the Haar measure (to be seen in the section about topological
groups) on a locally compact Hausdorff topological group can be thought of as
the natural generalization of the Lebesgue measure to a general locally compact
Hausdorff topological group.

Atomic, non-atomic, and continuous measures. In order to define discrete
and continuous measures we will need the following definition.

Definition 17 (Atom). Given a measure space (X ,A ,µ), a set A ∈A is called an
atom if:

(i) µ(A)> 0, and
(ii) For any measurable set B ⊆ A with µ(B)<µ(A) we have µ(B)= 0.

A σ-finite measure µ on a measurable space (X ,A ) is called purely atomic if ev-
ery measurable set of positive measure contains an atom. On the contrary, a σ-finite
measure which has no atoms is called non-atomic. Equivalently, µ is non-atomic if
for every measurable set A such that µ(A)> 0 there exists a measurable subset B of
A such that 0<µ(B)<µ(A).
Finally, a σ-finite measure µ is called continuous if for any A ∈A and any c ∈R such
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that 0< c <µ(A), there exists a measurable subset B of A such that µ(B)= c. Note
that any continuous measure is non-atomic.

There are two important existence theorems for measures, the Carathéodory
Extension Theorem and the Riesz Representation Theorem.

Definition 18 (Pre-measure). Let A be an algebra on a set X . A set function
µ0 : A → [0,∞] is called a pre-measure on (X ,A ) if µ0(∅)= 0 and, for every countable
(or finite) sequence A1, A2, . . . ∈A of pairwise disjoint sets whose union lies in A ,
we have

µ0

( ∞⋃
n=1

An

)
=

∞∑
n=1

µ0(An). (σ-additivity)

Theorem 19 (Carathéodory). Let A be an algebra on a set X . Any pre-measure µ0
on A extends to a measure µ on the σ-algebra σ(A ) generated by A . Moreover, if
µ0 is σ-finite then this extension is unique and σ-finite.

Theorem 20 (Riesz-Markov-Kakutani representation theorem). Let X be a locally
compact Hausdorff space. Let C (X ) be the Banach space of continuous functions
on X with the norm ∥ f ∥C (X ) = supx∈X | f (x)|. If l : C (X ) → C is a positive linear
functional on C (X ), then there exists a unique Radon measure µ on X such that

l( f )=
∫

f dµ,

for all f ∈C (X ).

0.3. Measurable Functions and Integrals

Throughout this section we let (X ,A ,µ) be a measure space. Natural classes of
measurable functions on X are built up from simpler functions, just as the σ-algebra
A may be built up from simpler collections of sets. Given a set A ⊆ X , we denote by
1A : X → {0,1} the indicator function of A, that is,

1A(x)=
{

1 if x ∈ A,
0 if x ∉ A, ∀x ∈ X .

Definition 21 (Simple function). A function f : X →R is called simple if

f (x)=
m∑

j=1
c j1A j (x), ∀x ∈ X ,

where c j ∈R and the A j ∈A are disjoint sets ∀ j = 1, . . . ,m. The integral of f is then
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defined to be ∫
f dµ=

m∑
j=1

c jµ(A j). (0.3.1)

Definition 22 (Measurable function). A function g : X →R is called measurable if
g−1(A) ∈A for any (Borel) measurable set A ∈BR.

Note that simple functions are always measurable functions. Below, we outline
several methods for generating new measurable functions from existing measurable
ones.

Proposition 23. Let f , g : X → R be measurable, and c ∈ R. Then, the following
functions are measurable:

(i) c f
(ii) f + g

(iii) f g
(iv) | f |
(v) min{ f , g} and max{ f , g}

The integral of simple functions has already been defined in (0.3.1). Our next
goal is to extend this definition to all measurable functions. To achieve this, we rely
on the following key approximation result.

Proposition 24. Let g : X → R⩾0 be a measurable function taking non-negative
values. There exists a pointwise increasing sequence of simple functions ( fn)n∈N (in
the sense that fn(x)⩽ fn+1(x) for all x ∈ X and n ∈N) such that limn→∞ fn(x)= g(x)
for each x ∈ X .

Definition 25 (Integral of non-negative measurable function). Let g : X → R⩾0
be a measurable function taking non-negative values, and let ( fn)n∈N be a point-
wise increasing sequence of simple functions converging to g as guaranteed by
Proposition 24. Then the integral of g is defined to be∫

g dµ= lim
n→∞

∫
fn dµ.

Moreover, g is called integrable if
∫

g dµ<∞.

Observe that the expression
∫

g dµ defined above is guaranteed to exist since
fn(x)⩽ fn+1(x) for all n ∈N and x ∈ X . One can show that this is well-defined, i.e.,
that it is independent of the choice of the sequence of simple functions.

We now extend the notion of integral for any measurable functions.

Definition 26 (Integral of general measurable function). Given a measurable
function g : X → R, g has in general a unique decomposition g = g+− g−, where
g+(x)=max{g(x),0} and g− =max{−g(x),0} for every x ∈ X . Note that both g+ and
g− are measurable. The function g is said to be integrable if both g+ and g− are
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integrable, and the integral of g is defined as∫
g dµ=

∫
g+ dµ−

∫
g− dµ.

Here is a way of determining if a given function is integrable or not.

Proposition 27. Let f , g : X → R. If f is integrable and g is measurable with
|g|⩽ f , then g is integrable.

Being integrable is preserved under restriction to a measurable set, and we give
the definition of the integrable restricted to a measurable set:

Definition 28 (Integral over measurable set). Let f : X → R be an integrable
function, and A be a measurable set. The integral of f over A is defined as∫

A
f dµ=

∫
1A f dµ.

0.4. Lp Spaces

We now recall some definitions and facts about Lp spaces, which are function
spaces defined using a natural generalization of the p-norm for finite-dimensional
vector spaces. Lp spaces form an important class of Banach spaces in functional
analysis, and of topological vector spaces. In the course of Ergodic Theory we will
use various results about functional analysis and in particular about Lp spaces.
Further recalls about functional analysis are given in the next section.

Definition 29 (L p space). Let (X ,A ,µ) be a measure space. For 1 ⩽ p <∞, we
define the set L p(X ,A ,µ) (sometimes also denoted L p(µ)) to be the set of all
measurable functions f : X →R such that

∫ | f |p dµ<∞.

Definition 30 (Lp space). We define an equivalence relation on L
p
µ by f ∼ g if∫ | f − g|p dµ= 0 and we write Lp

µ =L
p
µ /∼ for the space of equivalence classes.

Elements of Lp
µ will be described as functions rather than equivalence classes, but

it is important to remember that this is an abuse of notation.
Furthermore, we define the norm ∥·∥p by:

∥ f ∥p =
(∫

| f |p dµ

)1/p

We now give the definition of the Lp
µ in the case p =∞.

Definition 31 (Essential supremum). The essential supremum is the generalization
to measurable functions of the supremum of a continuous function, and is defined
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by:

∥ f ∥∞ = inf{α ∈R⩾0 :µ({x ∈ X : f (x)>α})= 0}.

The space L∞
µ is then defined to be the set of measurable functions f such that

∥ f ∥∞ <∞. Once again, L∞
µ is defined to be L∞

µ /∼.

Proposition 32. Under the norm ∥·∥p previously defined, Lp
µ is a Banach space,

for every 1⩽ p ⩽∞.

Proposition 33. For 1⩽ p < q ⩽∞ we have Lp
µ ⊇ Lq

µ for any finite measure space,
with strict inclusion except in some degenerate cases.

Finally we turn to integration of functions of several variables.

Theorem 34 (Fubini–Tonelli). Let (X ,A ,µ) and (Y ,B,ν) be two measure spaces
and let f be a non-negative integrable function on the product space (X ×Y ,A ⊗
B,µ⊗ν). Then, for µ-almost every x ∈ X the function y 7→ f (x, y) is integrable, and
for ν-almost every y ∈ X the function x 7→ f (x, y) is integrable, and we have∫

X×Y
f (x, y)d(µ×ν)(x, y)=

∫
X

(∫
Y

f (x, y) dν(y)
)
dµ(x)=

∫
Y

(∫
X

f (x, y) dµ(x)
)
dν(y).

0.5. Convergence Theorems

The most important distinction between integration on Lp spaces as defined
above and Riemann integration on bounded Riemann-integrable functions is that
the Lp functions are closed under several natural limiting operations, allowing
for the following important convergence theorems. We start with the Monotone
Convergence Theorem.

Theorem 35 (Monotone Convergence Theorem). Suppose f1 ⩽ f2 ⩽ . . . is a point-
wise increasing sequence of non-negative real-valued measurable functions on the
measure space (X ,A ,µ) which converges almost everywhere to a function f on X .
Then f is measurable and ∫

f dµ= lim
n→∞

∫
fn dµ.

In particular, if limn→∞
∫

fn dµ<∞, then f is integrable.

When the fn,n ∈N, are integrable, the assumption that fn is non-negative for
every n ∈ N can be dropped by considering instead the non-negative sequence of
measurable function gn = fn − f1, which is also a pointwise increasing sequence.
Next, we state Fatou’s lemma, which is not only needed to prove the dominated
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convergence theorem below but it includes also a statement of the behaviour of the
integral under pointwise (or almost everywhere) convergence: The integral is lower
semi-continuous under almost everywhere convergence.

Theorem 36 (Fatou’s lemma). Let ( fn)n∈N be a sequence of non-negative real-valued
measurable functions on the measure space (X ,A ,µ). Then, f = liminfn→∞ fn is
measurable and

liminf
n→∞

∫
fn dµ⩾

∫
f dµ=

∫
liminf

n→∞ fn dµ

In particular, if fn is integrable for every n ∈N, then f is also integrable.

Contrary to the Monotone Convergence Theorem, the hypothesis that fn is non-
negative for every n ∈N cannot be dropped.
Finally, we state the Dominated Convergence Theorem, which formulates sufficient
conditions under which almost everywhere convergence yields an integrable function
and such that limit and integral are interchangeable. Note that this is an important
difference with Riemann integral.

Theorem 37 (Dominated Convergence Theorem). Let (X ,A ,µ) be a measure space.
If h : X → R is a non-negative integrable function, and ( fn)n∈N is a sequence of
measurable real-valued functions on (X ,A ,µ) which are dominated by h in the
sense that | fn|⩽ h,∀n ∈N, and limn→∞ fn = f exists almost everywhere, then f is
integrable and ∫

f dµ= lim
n→∞

∫
fn dµ.



Chapter 1

Measure Preserving Systems

1.1. Definition and Examples

Most of the material in this lecture notes is also contained, for instance, in
[Wal82] and in [EW11].

Definition 38 (Measure preserving transformation). Given a probability space
(X ,A ,µ), we say that a measurable map T : X → X preserves the measure or is a
measure preserving transformation if for every A ∈A we have µ(T−1A)=µ(A).

Recall that for any probability space (X ,A ,µ) and any measurable map T : X →
X , the measure Tµ defined via

Tµ(A)=µ(T−1A), ∀A ∈A ,

is a probability measure on A called the push-forward of µ under T. If Tµ=µ, we
say that the measure µ is invariant under the map T. This invariance implies that
the map T does not change the measure of any measurable set, or in other words, for
any A ∈A , we have µ(T−1(A))=µ(A). Thus, saying that T preserving the measure
µ (as defined in Definition 38) is equivalent to stating that µ is invariant under T;
the two terms express the same property and and we will use them interchangeably
throughout these lecture notes.

Example 39. Imagine a computer program with the capability to generate uni-
formly at random and without bias a real number x in the interval [0,1) = {x ∈ R :
0⩽ x < 1}. Then there is a 50% chance that a number generated with this program
lies in the interval [0,1/2), and a 20% chance that the generated number lies in the
interval [3/5,4/5), just as an example. Now consider a second, considerably simpler,
program that receives as an input a real number x ∈ [0,1) and produces as an output
the number y = 2x mod 1. If you first run program number one to produce x and
then apply program number two to “transform” x to y, then has this procedure still

15
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generated a “random” real number between 0 and 1? In particular, is there still a
50% chance for y to belong to the interval [0,1/2), and a 20% chance for it to belong
to [3/5,4/5)? The answer is yes! The first program produces a number chosen at
random with respect to the Lebesgue measure on [0,1) and the second program
corresponds to the transformation T : [0,1)→ [0,1) given by T(x)= 2x mod 1. Since
T preserves the Lebesgue measure on [0,1), the second program does not introduce
any subsidiary bias, meaning that the second number can also be thought of as
chosen at random with respect to the Lebesgue measure on [0,1).

Definition 40 (Measure preserving system). A measure preserving system is a
quadruple (X ,A ,µ,T) where (X ,A ,µ) is a probability space and T : X → X is a
measure preserving transformation.

Examples
The following examples illustrate the above definitions and serve as a guide for the
concepts and results presented in later sections.

One point system. If X = {x} is a singleton then there exist only one σ-algebra
A and only one probability measure µ on X , namely A = {;, {x}} and µ(;)= 0 and
µ({x})=1. Let T : X → X be the identity map. Then (X ,A ,µ,T) is a (rather trivial)
measure preserving system, called the one point system.

Identity systems. Let (X ,A ,µ) be an arbitrary probability space and let T = idX
be the identity map on X . Since the push-forward of µ under idX is always equal
to µ, (X ,A ,µ, idX ) is a measure preserving system. Systems of this kind are often
referred to as identity systems.

Rotation on m points. Given an integer m ⩾ 2, let X = {0,1, . . . ,m−1}, which
we can identify with the finite cyclic group of order m. Let A be the power set of
{0,1, . . . ,m−1} and let T : {0,1, . . . ,m−1}→ {0,1, . . . ,m−1} be the map

T(x)= x+1 mod m.

Finally, let µ be the probability measure uniquely determined by µ({i}) = 1/m for
all i = 0,1, . . . ,m−1. The resulting measure-preserving system (X ,A ,µ,T) is called
rotation on m points.

Circle rotations. Let X = [0,1), endowed with the Borel σ-algebra A and the
Lebesgue measure µ. Given α ∈ R we consider the map T = Tα : X → X given by
Tx = x+α mod 1. The fact that T preserves the measure µ follows from the basic
properties of Lebesgue measure.
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Alternatively, we can identify the interval [0,1) with the compact group T=R/Z
in the obvious way. The Lebesgue measure on [0,1) gets identified with the Haar
measure on T, and T becomes the map Tx = x+ α̃ (where α̃=α+Z ∈T). This map
clearly preserves the Haar measure.

The reason to call this system a circle rotation is that the 1-dimensional torus T is
isometrically isomorphic to the circle S1 ⊆C, viewed as a group under multiplication.
The map T under this identification becomes the rotation T : z 7→ θz, where θ =
e2πiα ∈ S1.

Compact group rotations. The previous two examples are special cases of so-
called group rotations: If (G,+) is a compact abelian group, endowed with the Borel
σ-algebra BG and the (normalized) Haar measure mG , then for any fixed α ∈ X , the
map R : x 7→ x+α preserves mG and hence (G,BG ,mG ,R) is a measure preserving
system.

The doubling map. The next example of a measure-preserving system is one that
we have already encountered in Example 39 above. Take (X ,A ,µ) to be the unit
interval [0,1) equipped with its Borel σ-algebra and Lebesgue measure. Let T : X →
X be the doubling map T(x) = 2x mod 1. Let us show that this transformation
preserves the measure: Given an interval [a,b)⊆ [0,1), the pre-image T−1([a,b)) is
the union of two intervals, each half the length of the original interval:

T−1([a,b)
)= [

a
2

,
b
2

)
∪

[
a+1

2
,
b+1

2

)
.

This shows that the Lebesgue measure of [a,b) and T−1([a,b)) are identical. Since
T−1 preserves the measure of all intervals and since intervals generate the Borel
σ-algebra on [0,1), it follows that T is a measure-preserving transformation.

More generally, for any positive integer p the map T(x) = px mod 1 preserves
the Lebesgue measure, giving rise to a class of measure-preserving systems whose
dynamical behaviour can offer new insights on base-p digit expansions of the real
numbers.

Toral endomorphisms and toral automormphisms. The transformations
T(x) = px mod 1 for p ∈ N introduced in the previous example are 1-dimensional
instances of so-called toral endomorphisms. For higher-dimensions, these are
defined as follows. Given a matrix A ∈ GL(n,Z), one can construct the measure
preserving system (X ,A ,µ,T), where X = [0,1)n, A the Borel σ-algebra on [0,1)n,
µ the n-dimensional Lebesgue measure restricted to [0,1)n, and T is defined by
Tx = Ax mod Zn. Whenever det(A) ̸= 0, we call T a linear toral endomorphism.

Note that in general, A is not invertible in GL(n,Z). However, if det(A) = ±1
then A−1 exists, and belongs to GL(n,Z). Such a matrix is called unimodular. In
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this case, T is said to be a toral automorphism, and its inverse transformation T−1

is given by T−1x = A−1x mod Zn.

Arnold’s cat map. In the case n = 2, we define Arnold’s cat map to be the toral

automorphism where A =
(
2 1
1 1

)
∈ GL(2,Z). The induced map is therefore given

by T(x, y)= (2x+ y mod 1, x+ y mod 1). It was named after Vladimir Arnold, who
demonstrated its effects in the 1960s using an image of a cat, hence the name. Note

that
(
2 1
1 1

)
=

(
1 1
0 1

)(
1 0
1 1

)
, that is, the square is sheared one unit up, then two units

to the right, and all regions outside the unit square are reduced modulo Z2 to lie
in the unit square. The following picture is showing how the linear map stretches
the unit square and how its pieces are rearranged when the modulo operation is
performed.

Figure 1.1: Visualization of the effect of Arnold’s cat map on the unit square

A central concern of ergodic theory is the dynamical behavior of a measure pre-
serving system when it is allowed to run for a long time, and one of the main
object of study is the notion of periodicity, i.e the question of how and when orbits
in dynamical systems return to their initial position. In this sense, Arnold’s cat
map is an interesting example as it exhibits various interesting properties based
on periodicity. Indeed, a noticeable property is that for any n ∈N, the number of
points with period n (returning to their initial position after n iterations) is exactly
|λn

1 +λn
2 −2|, where λ1 and λ2 are the eigenvalues of the matrix A. In fact, yhe set

of points with a periodic orbit is dense on the torus. Actually, it can be shown that a
point is periodic if and only if its coordinates are rational.
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An interesting application of Arnold’s cat map, and more generally, chaotic maps, is
in the domain of image encryption. Indeed, instead of a torus, we consider an N×N
pixels picture and the following sequence :(

xn+1
yn+1

)
=

(
2 1
1 1

)(
xn
yn

)
mod N

which describes the position of a given pixel after n iteration, where initially we pick
x0, y0 ∈ {0,1, . . . , N −1}. One of this map’s features is that when iteratively applied
to an image, the result apparently looks randomized in a first place, but it always
returns to its initial state after a number of steps depending on the size of the
image. As it can be seen in the picture below, the original image of the cat is sheared
and then wrapped around in the first iterations of the transformation. After some
iterations, the various pixels of the original picture appear rather mixed together in
a random manner, yet at various iterations, we can somewhat distinguish multiple
smaller appearances of the cat arranged in a repeating structure, and it ultimately
returns to the original image.

Figure 1.2: Visualization of the effect of Arnold’s cat map on the unit square

Bernoulli schemes. Let X = {0,1}N be the space of all (one-sided) infinite strings
of 0’s and 1’s. Giving {0,1} the discrete topology, we can endow X with the product
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topology1. In view of Tychonoff ’s theorem, X is compact. Let A be the Borel
σ-algebra on X generated by the cylinder sets. Given p ∈ (0,1), let µ0 be the
measure on {0,1} given by µ0({1}) = p and µ0({0}) = 1− p, and let µ = µN0 be the
product probability measure on X already defined in the first chapter. There is
a natural map T : X → X that preserves this measure µ, called the left-shift: For
(xn)∞n=1 ∈ X define T((xn)∞n=1)= (yn)∞n=1 where yn = xn+1 for all n ∈N. The resulting
measure preserving system (X ,A ,µ,T) appears naturally in symbolic dynamics
and is related to so-called Bernoulli processes in probability and statistics.

Instead of sequences consisting of 0’s and 1’s, one can also consider sequences
using elements from any other alphabet Σ. In general, a measure preserving system
is called a Bernoulli scheme if it is of the form (X ,A ,µ,T) where X =ΣN, A is the
σ-algebra of Borel sets on X generated by cylinder sets, T is the left shift and µ=µN0
is the product measure of some arbitrary probability measure µ0 on Σ.

Baker’s transformation. This example offers another way of generalizing the
doubling map to two dimensions. Consider the probability space (X ,A ,µ), where
X = [0,1)2 is the unit square, A is the Borel σ-algebra on X and µ is the two-
dimensional Lebesgue measure. We define the Baker’s map T : [0,1)2 → [0,1)2 by
:

T(x, y)=


(2x, y

2 ) for 0⩽ x < 1
2 ,0⩽ y< 1

(2x−1, y+1
2 ) for 1

2 ⩽ x < 1,0⩽ y< 1

Then, T is an invertible, measurable and measure preserving transformation.
We can define an analogous map S : X → X by :

S(x, y)=



(3x, y
3 ) for 0⩽ x < 1

3 ,0⩽ y< 1

(2−3x, y+1
3 ) for 1

3 ⩽ x < 2
3 ,0⩽ y< 1

(3x−2, y+2
3 ) for 2

3 ⩽ x < 1,0⩽ y< 1

which is also invertible, measurable and a measure preserving transformation. To
visualize what the map S does on the unit square, one can see that it represents the
process of making the well-known French delicacy puff pastry, used in croissants and
various other pastries. The idea is as follows: you have a piece of dough (represented
by the unit square) with the lower half being the dough and the upper half being
the butter. You then stretch the dough by 3 times its original length and consider
the dough as composed of 3 parts, each of length one. We then fold it just as a baker
would do it (hence the name Baker’s transformation), namely, we put the second
part on top of the first part, and the third part on top of everything, without cutting

1This means that a set U ⊆ X is open iff for every x ∈ U there exists n ∈ N such that if y ∈ X
satisfies yi = xi for all i ⩽ n, then y ∈U .
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the dough, and finally, we compress the result in order to get back the unit square.
This process is a chaotic map from the unit square into itself and it has this very
niece property that it will efficiently mix the dough and the butter in order to form
a very homogeneous buttered dough. In ergodic theory, we call this phenomenon
strong mixing, which will be covered in Chapter 6.

Product systems. One way to construct new measure preserving systems out
of given ones is by taking their product. Given two measure preserving systems
(X ,A ,µ,T) and (Y ,B,ν,S), we define their product to be the measure preserving
system (Z,C ,λ,R), where (Z,C ,λ) = (X ×Y ,A ⊗B,µ× ν) is the product of the
probability spaces (X ,A ,µ) and (Y ,B,ν), and R : Z → Z is defined as R(x, y) =
(Tx,Sy).

Skew-products. Let X = [0,1)2, let A be the Borel σ-algebra and let µ be the
Lebesgue measure. Fix α ∈R and let T : X → X be the map T(x, y)= (x+α mod 1, y+
x mod 1). Then (X ,A ,µ,T) is a measure preserving system called a skew-product.

To see why T preserves the measure, observe that it suffices to check that for
any f , g ∈ C([0,1))∫ 1

0

∫ 1

0
f (x+α mod 1)g(x+ y mod 1) dy dx =

∫ 1

0

∫ 1

0
f (x)g(y) dy dx,

which can be verified directly.

1.2. Recurrence

At the end of the XIX’th century, the french mathematician Henry Poincaré
put an end to a myth acquired since Newton, that the universe is deterministic in
the sense that knowing the past uniquely determines the future. Newton perfectly
described the action of gravitational forces between two celestial bodies, but these
laws don’t apply as well to systems with more than two bodies.

It is in this context that Poincaré, in his work, considered systems with 3
celestial bodies. Newton’s equations applied at these 3 bodies lead to a very complex
differential equation that cannot be solved. He showed that in the special case where
one body has zero mass, and the other two have a circular movement, then, the
three bodies will eventually return infinitely many times to their original position.
This initial observation led to the statement of Poincaré’s Recurrence Theorem,
which was proved 30 years later by Carathéodory using measure theory.

Here is the first theorem of ergodic theory.



22 CHAPTER 1. MEASURE PRESERVING SYSTEMS

Poincaré’s Recurrence Theorem. Let (X ,A ,µ,T) be a measure preserving sys-
tem and let A ∈A with µ(A)> 0. Then for some n ∈N we have

µ(A∩T−n A)> 0. (1.2.1)

Proof. Since T is measure preserving, for any n ∈N the set T−n A has the same mea-
sure as the set A. Since the ambient space X has measure 1 and A, T−1A, T−2A, . . .
is an infinite sequence of sets with the same (positive) measure, by the pigeonhole
principle there must exist i > j with µ(T−i A∩T− j A)> 0. Letting n = i− j, we obtain

µ(A∩T−n A)=µ
(
T− j(A∩T−n A)

)=µ(T−i A∩T− j A)> 0.

Corollary 41. Let (X ,A ,µ,T) be a measure preserving system and let A ∈A . Then
for µ-a.e. x ∈ A there exists n ∈N such that Tnx ∈ A, i.e. x returns to A at time n.

Proof. Let B := {x ∈ A : Tnx ∉ A for all n ∈ N}; we need to show that µ(B) = 0. If
µ(B) > 0, then by Poincaré’s Recurrence Theorem one can find m ∈ N such that
B∩T−mB has positive measure and, in particular, is non-empty. But if y ∈ B∩T−mB
then Tm y ∈ B ⊆ A, contradicting the fact that y ∈ B. This contradiction implies
µ(B)= 0.

Poincaré’s Recurrence Theorem and its many generalizations, variations, and ap-
plications, form a sub-field of ergodic theory called the theory of recurrence. Broadly
speaking, it focuses on the question of when and how close orbits in dynamical
systems return to their initial position. The recurrence properties of measure pre-
serving systems can provide important information about their dynamical behavior.
Also, as we will discover in this course, there exist remarkable synergies between
the theory of recurrence and problems in number theory and additive combinatorics.

1.3. Ergodicity

Poincaré’s Recurrence Theorem asserts that the orbit x,Tx,T2x, . . . of a typical
point x ∈ X returns to its initial location. But it doesn’t provide any further informa-
tion about the distribution of the orbit within the space. This is where the notion of
ergodicity comes into play.

The word ergodic is derived from Ludwig Boltzmann’s ‘ergodic hypothesis’ in
thermodynamics, which describes a Hamiltonian system2 with the property that
the time spent in a certain region of the space is proportional to the spacial volume
of that region. In the language of measure preserving systems, this means that the

2As an example of a Hamiltonian system, the reader can consider the Lorentz gas model commonly
used to describe the kinetic movements of gas molecules in a chamber.
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amount of time that an orbit x,Tx,T2x,T3x, . . . of a typical point x ∈ X spends in
a certain measurable set is proportional to the measure of that set. For example,
if A has measure 1/2 then, asymptotically, half of all n ∈N satisfy Tnx ∈ A. What
we have just described is in fact the conclusion of Birkhoff’s Pointwise Ergodic
Theorem, one of the fundamental results in ergodic theory (discussed in Chapter 4)
and equivalent to ergodicity.

Although Boltzmann initially conjectured that all naturally occurring systems
satisfy the ergodic hypothesis, it was shown by John von Neumann that this is
not the case, which is why today we distinguish between ergodic and non-ergodic
systems.

Definition 42 (Ergodicity). A measure preserving system (X ,A ,µ,T) is ergodic if
for every set A ∈A ,

T−1A = A =⇒ µ(A)= 0 or µ(A)= 1.

Henceforth, let us call a set A ∈ A strictly invariant if T−1A = A and almost
everywhere invariant if µ(A△T−1A)= 0. Similarly, we call a measurable function
f : X → C strictly invariant if f (Tx) = f (x) for all x ∈ X and almost everywhere
invariant if f (Tx)= f (x) for µ-a.e. x ∈ X .

The next proposition provides four equivalent characterizations of the notion of
ergodicity.

Proposition 43. Let (X ,A ,µ,T) be a measure preserving system. The following
are equivalent:

(i) (X ,A ,µ,T) is ergodic;
(ii) If A ∈A is almost everywhere invariant then either µ(A)= 0 or µ(A)= 1;

(iii) If f : X →C is measurable and strictly invariant then f is equal to a constant
almost everywhere.

(iv) If f : X →C is measurable and almost everywhere invariant then f is equal
to a constant almost everywhere.

Proof. The implication (ii)=⇒ (i) is trivial. The reverse implication (i)=⇒ (ii) follows
readily from the observation that if A ∈A is almost everywhere invariant then the
set A′ =⋃∞

m=0
⋂∞

j=m T− j A is strictly invariant and satisfies µ(A)=µ(A′).
The implications (iv)=⇒ (iii)=⇒ (i) also do not require a proof, since they are im-

mediate. To prove (iii)=⇒ (iv), let f : X →C be a measurable and almost everywhere
invariant function. Let A f = {x ∈ X : f (Tx)= f (x)} and note that A f has full measure
and is almost everywhere invariant. Therefore the set A′

f =
⋃∞

m=0
⋂∞

j=m T− j A f also
has full measure and is strictly invariant. Now the function

f ′(x)=
{

f (x), if x ∈ A′
f

0, otherwise

is strictly invariant and almost everywhere equal to f . By (iii) it follows that f ′ is
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almost everywhere equal to a constant, which implies that f is almost everywhere
equal to a constant.

Finally, let us prove (i)=⇒ (iii). Suppose f : X →C is a measurable and strictly
invariant function. Recall that the essential supremum of a measurable function is
defined as

esssup f = inf{α ∈R :µ({x ∈ X : f (x)>α}= 0)}.

For any α< esssup f consider the set Aα = {x ∈ X : f (x) < α} and observe that if f
is strictly invariant then Aα is strictly invariant. Note that Aα cannot have full
measure, because α is smaller than the essential supremum of f . Therefore, in light
of (i), Aα must have zero measure. But if Aα has zero measure for all α< esssup f
then this implies that f is almost everywhere equal to esssup f , finishing the
proof.

Examples
Finite systems. Let X := {1, . . . ,n} be a finite of cardinality n, let A =P (X ), and
let µ be the normalized counting measure on X , that is,

µ(A)= |A|
|X | , ∀A ⊆ X .

Then (X ,A ,µ) is a finite probability space. A map T : X → X preserves the measure
µ if and only if it is a bijection from X to X . In other words, T is a permutation.
Moreover, T is ergodic if, and only if it has only one orbit, that is, for every x, y ∈ X ,
there exists k ∈N such that y= Tkx. For instance, the cycle (1 2 . . . n) constitutes
an ergodic transformation on {1, . . . ,n}, since the invariant subsets are ; and X . On
the other hand, the permutation (1 2)(3 . . . n) is not ergodic since the sets {1,2} and
{3, . . . ,n} are invariant subsets which have measure 2

n and n−2
n respectively.

Circle rotations. Consider the probability space (X ,A ,µ) where X = [0,1), A is
the Borel σ-algebra on X , and µ is the Lebesgue measure. Given α ∈R, consider the
rotation by alpha T : X → X defined by Tx = x+α mod 1. We already argued that
T is a measure preserving transformation. Now we can ask ourselves the following
question: Is T ergodic?

As motivation, we can first consider the case when α= 1/4. Observe that the set
A = [0,1/8)∪ [1/4,3/8)∪ [1/2,5/8)∪ [3/4,7/8) is T-invariant and satisfies µ(A) = 1/2;
this implies that the transformation is not ergodic.

More generally, one can show that T is ergodic if, and only if α is irrational.

Doubling map. Consider the probability space (X ,A ,µ) where X = [0,1), A is
the Borel σ-algebra on X , and µ is the Lebesgue measure. This time, consider the
doubling map Tx = 2x mod 1. It is left as an exercise to show that T is ergodic.



25

More generally, this results also holds for non-integer values > 1. Even more
generally, one can show that this results still holds for the product probability space
[0,1)2,A ⊗A ,µ⊗µ), and the map T ×T(x, y)= (px mod 1, py mod 1).
Finally, using multi-dimensional Fourier analysis, we can find an analogous result
for toral endomorphisms over n-toruses Tn = (R/Z)n. We have already seen that any
A ∈GLn(Z) induces a map TA :Tn →Tn preserving the Lebesgue measure induced
on Tn. A well-known result is that TA is ergodic if, and only if, no eigenvalue of A is
a root of unity.

Induced transformation. Let (X ,A ,µ) be a probability space and T : X → X a
measure preserving transformation on it. Fix some A ∈A with µ(A)> 0. In light of
Poincaré’s Recurrence Theorem, it follows that almost every x ∈ A returns infinitely
often to A under the action of T. For every x ∈ A we define n(x) := inf{n ∈N : Tnx ∈ A}
to be the first return time of x to A.

By Poincaré’s Recurrence Theorem, n(x) is finite for almost every x ∈ A, hence,
without loss of generality, we can assume that we remove the set of measure zero
on which n(x)=∞ and call the new set A. Consider the σ-algebra on A |A, which
consists of the restriction of A on A, i.e A |A := {B∩ A : B ∈A }. We now define µ|A
to be the probability measure on A defined by :

µ|A(B)= µ(B)
µ(A)

, ∀B ∈A |A.

Hence, (A,A |A,µ|A) is a probability space. Finally, define the map TA : A → A by
TAx = Tn(x)x, for x ∈ A. Then, this map is measurable with respect to A |A and
is a measure preserving transformation. Moreover, if T is ergodic on (X ,A ,µ),
then TA is ergodic on (A,A |A,µ|A). If we additionally add the assumption that
µ

(⋃
k⩾1 T−k A

)= 1, then the converse is also true (i.e, TA ergodic implies T ergodic).





Chapter 2

Von Neumann’s Mean Ergodic
Theorem

2.1. Koopman Operator

Definition 44 (Koopman operator). Given a measure preserving transformation
T : X → X on a probability space (X ,A ,µ), we call the linear operator UT : L2(X ,A ,µ)→
L2(X ,A ,µ) given by

UT f = f ◦T

the associated Koopman operator.

The Koopman operator is well defined because T preserves the measure µ

and therefore composition with T preserves measure-zero equivalency classes and
square-integrability.

Lemma 45. The operator UT is an isometry, which means 〈UT f ,UT g〉 = 〈 f , g〉 for
all f , g ∈ L2(X ,A ,µ). In particular, ∥UT f ∥L2 = ∥ f ∥L2 for all f ∈ L2(X ,A ,µ).

Proof. Let f , g ∈ L2(X ,A ,µ). Since T preserves the measure, we have〈
UT f ,UT g

〉= ∫
X

f (Tx) g(Tx) dµ(x)=
∫

X
f (x) g(x) dµ(x)= 〈

f , g
〉
,

which proves that UT is isometric.

27
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2.2. The Splitting Hinv⊕Herg

Henceforth, we denote by Hinv the space of almost everywhere invariant func-
tions in L2(X ,A ,µ),

Hinv = { f ∈ L2(X ,A ,µ) : UT f = f }.

In view of Proposition 43, the system (X ,A ,µ,T) is ergodic if and only if Hinv
consists only of almost everywhere constant functions.

A function f ∈ L2(X ,A ,µ) is called a coboundary if it satisfies the coboundary
equation

f = g− g ◦T (2.2.1)

for some g ∈ L2(X ,A ,µ). Note that the set of all coboundaries forms a subspace of
L2(X ,A ,µ), but not a closed subspace. Let Herg denote its closure,

Herg = { f ∈ L2(X ,A ,µ) : f is a coboundary}. (2.2.2)

Note that Hinv and Hinv are both invariant subspaces of L2(X ,A ,µ) under UT ,
by which we mean that UTHinv ⊆Hinv and UTHerg ⊆Herg. The first claim follows
from the observation that if f is almost everywhere invariant, then so is UT f , and
the second claim follows because if f is a coboundary then so is UT f .

The following result says that Herg is the orthocomplement of Hinv.

Theorem 46. We have Hinv ⊥Herg and Hinv ⊕Herg = L2(X ,A ,µ).

Proof. For notational convenience, let us write C for the set { f ∈ L2(X ,A ,µ) :
f is a coboundary}. It suffices to show C ⊥ = Hinv, because this implies that the
closure of C coincides with the orthocomplement of Hinv, which by definition equals
Herg. Let us first show C ⊥ ⊆Hinv. Suppose f ∈C ⊥, which simply means 〈 f , g〉 = 0
for all g ∈C . Then we have

∥ f −UT f ∥2 = ∥ f ∥2 +∥UT f ∥2 −2Re〈 f ,UT f 〉
= 2∥ f ∥2 −2Re〈 f ,UT f 〉
= 2〈 f , f 〉−2Re〈 f ,Ut f 〉
= 2Re〈 f , f −Ut f 〉 = 0.

Hence f ∈Hinv as was to be shown.
To prove the reverse inclusion Hinv ⊆C ⊥, we need to show 〈 f ,h〉 = 0 for all f ∈C

and h ∈ Hinv. If f ∈ C then, by the definition of a coboundary, there exists some
g ∈ L2(X ,A ,µ) for which f = g−UT g holds. Hence for any h ∈Hinv we have

〈 f ,h〉 = 〈g,h〉−〈UT g,h〉 = 〈g,h〉−〈UT g,UT h〉 = 〈g,h〉−〈g,h〉 = 0,
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showing that h ∈C ⊥ and finishing the proof.

The following is an immediate corollary of Theorem 46.

Corollary 47. For every f ∈ L2(X ,A ,µ) there exist unique finv ∈ Hinv and ferg ∈
Herg such that

f = finv + ferg. (2.2.3)

Note that finv in (2.2.3) is exactly the orthogonal projection of f onto the space
Hinv and, likewise, ferg is the orthogonal projection of f onto the space Herg.

2.3. The Mean Ergodic Theorem

Here is Von Neumann’s Mean Ergodic Theorem.

Mean Ergodic Theorem (General Case). Let (X ,A ,µ,T) be a measure preserving
system. For every f ∈ L2(X ,A ,µ) we have

lim
N→∞

1
N

N−1∑
n=0

Un
T f = finv in L2-norm, (2.3.1)

where finv is the orthogonal projection of f onto Hinv as guaranteed by (2.2.3).

Proof. According to (2.2.3) we can write f = finv + ferg. Hence

1
N

N−1∑
n=0

Un
T f =

( 1
N

N−1∑
n=0

Un
T finv

)
+

( 1
N

N−1∑
n=0

Un
T ferg

)
.

Clearly, we have 1
N

∑N−1
n=0 Un

T finv = finv, because finv is invariant under UT . Thus, to
finish the proof of (2.3.1), it suffices to show

lim
N→∞

1
N

N−1∑
n=0

Un
T ferg = 0 in L2-norm (2.3.2)

for all ferg ∈Herg. In view of (2.2.2), we can assume that ferg is a coboundary, i.e.,
there exists g ∈ L2(X ,A ,µ) such that ferg = g−UT g. But if ferg = g−UT g then the
sum in (2.3.2) is telescoping, yielding

1
N

N−1∑
n=0

Un
T ferg =

UT g−UN
T g

N
.

Since UT g−UN
T g has norm at most 2∥g∥L2 , we obtain∥∥∥ 1

N

N−1∑
n=0

Un
T ferg

∥∥∥
L2

⩽
2∥g∥L2

N
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and (2.3.2) follows.

Mean Ergodic Theorem (Ergodic Case). Let (X ,A ,µ,T) be an ergodic measure
preserving system. Then for every f ∈ L2(X ,A ,µ) we have

lim
N→∞

1
N

N−1∑
n=0

Un
T f =

∫
f dµ (2.3.3)

in L2-norm.

Proof. In light of (2.3.1), it suffices to show that if the system (X ,A ,µ,T) is ergodic
then finv = ∫

f dµ. So assume (X ,A ,µ,T) is ergodic and let f ∈ L2(X ,A ,µ) be
aritrary. According to Corollary 47, there exist unique finv ∈Hinv and ferg ∈Herg
such that f = finv + ferg. By definition, finv is an almost everywhere invariant
function. Therefore, by part (iv) of Proposition 43, finv is almost everywhere equal
to a constant, which we denote by c. To finish the proof of (2.3.3), it only remains
to show that

∫
f dµ = c. Let 1 denote the function that is constant equal to 1

everywhere. Then∫
f dµ = 〈 f ,1〉 = 〈 finv,1〉+〈 ferg,1〉 = c+〈 ferg,1〉.

Since 1 is invariant under the transformation T and ferg is orthogonal to all invari-
ant functions, we have 〈 ferg,1〉 = 0, showing that

∫
f dµ= c as desired.

2.4. Uniform Mean Ergodic Theorem

The mean ergodic theorem possesses a “uniform” version where the Cesàro
averages limN→∞ 1

N
∑N−1

n=0 are replaced by the more general uniform Cesàro averages
limN−M→∞ 1

N−M
∑N−1

n=M . More precisely, we say that the uniform Cesàro average of a
sequence (un)n∈N in a Hilbert space exists and equals u, and write

lim
N−M→∞

1
N −M

N−1∑
n=M

un = u,

if for all ε> 0 there exists K ∈N such that for all N, M ∈N with N −M ⩾ K we have∥∥∥∥( 1
N −M

N−1∑
n=M

un

)
− u

∥∥∥∥⩽ ε.

Uniform Mean Ergodic Theorem. Let (X ,A ,µ,T) be a measure preserving
system. For every f ∈ L2(X ,A ,µ) we have

lim
N−M→∞

1
N −M

N−1∑
n=M

Un
T f = finv in L2-norm, (2.4.1)
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where finv is the orthogonal projection of f onto Hinv as guaranteed by (2.2.3).

Proof. The proof of the Uniform Mean Ergodic Theorem is essentially identical
to the proof of Mean Ergodic Theorem. One needs to replace all occurrences of
Cesàro averages with uniform Cesàro averages, but otherwise the argument stays
the same.

2.5. Consequences of the Mean Ergodic Theorem

Corollary 48. A measure preserving system (X ,A ,µ,T) is ergodic if and only if for
every A,B ∈A ,

lim
N→∞

1
N

N−1∑
n=0

µ(T−n A∩B)=µ(A)µ(B). (2.5.1)

Proof. If the system is not ergodic, then by definition there exists a strictly invariant
set A ∈ B with 0 < µ(A) < 1. Taking B = X\A, we see that µ(A)µ(B) > 0 but
T−n A∩B =; for every n, contradicting (2.5.1).

If the system is ergodic then we proceed as follows. First observe that 1T−n A =
1A ◦Tn =Un

T1A. This implies µ(T−n A∩B)= ∫
Un

T1A ·1B dµ and hence

lim
N→∞

1
N

N−1∑
n=0

µ(T−n A∩B)= lim
N→∞

∫ ( 1
N

N−1∑
n=0

Un
T1A

)
·1B dµ.

By ergodicity, it follows from the Mean Ergodic Theorem that 1
N

∑N−1
n=0 Un

T1A →µ(A)
as N →∞ in L2-norm. Since norm convergence in L2 implies weak convergence in
L2, we get

lim
N→∞

∫ ( 1
N

N−1∑
n=0

Un
T1A

)
·1B dµ=

∫
µ(A) ·1B dµ=µ(A)µ(B),

completing the proof.

Setting A = B in Corollary 48 we see that, in ergodic systems, one can improve
Poincaré’s Recurrence Theorem by finding n ∈N such that µ(T−n A∩A) is arbitrarily
close to µ2(A). One can in fact obtain a stronger version of this fact, which also
applies to non-ergodic systems.

Definition 49. A set S ⊆N is called syndetic if it has bounded gaps. More precisely,
S is syndetic if there exists L ∈N such that every interval {n,n+1, . . . ,n+L−1} of
length L contains some element of S.
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Khintchine’s recurrence theorem. Let (X ,B,µ,T) be a measure preserving
system, let A ∈ B and let ε> 0. Then there exists n ∈N such that µ(A∩T−n A) >
µ2(A)−ε, and moreover the set{

n ∈N :µ(A∩T−n A)>µ2(A)−ε}
is syndetic.

The proof of Khintchine’s recurrence theorem is covered in the exercise class.



Chapter 3

Uniform Distribution of Sequences

3.1. Uniform Distribution Modulo 1

Definition 50. The density (sometimes also called the natural density or the asymp-
totic density) of a set A ⊆N is defined as

d(A)= lim
N→∞

|A∩ {1, . . . , N}|
N

whenever this limit exists. If this limit does not exist then we say that the density
of A does not exist.

Here are some examples of subsets of the natural numbers and their respective
densities:

• d(N)= 1;
• d(2N)= 0.5;
• d(□-free)= 6

π2 , where □-free denotes the set of squarefree numbers;
• d(P)= 0, where P is the set of prime numbers.

Given a real number x we call ⌊x⌋ =max{n ∈Z : n⩽ x} the integer part of x and
{x}= x−⌊x⌋ the fractional part of x. Just as the interval [0,1) is often identified with
the (1-dimensional) torus T = R/Z, the map x 7→ {x}, which sends a number to its
fractional part, is often identified with the natural projection of R onto T given by
x 7→ x mod 1 (sometimes also written as x 7→ x mod Z).

Definition 51. We say a sequence of real numbers (xn)n∈N is uniformly distributed
mod 1 if for every 0⩽ a⩽ b ⩽ 1 we have

lim
N→∞

|{1⩽ n⩽ N : {xn} ∈ [a,b)}|
N

= (b−a). (3.1.1)

Remark 52. A sequence (xn)n∈N is uniformly distributed mod 1 if and only if for all
0⩽ a⩽ b ⩽ 1 the set {n ∈Z : {xn} ∈ [a,b)} has density (b−a).

33
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3.2. Weyl’s Criterion

The following result gives necessary and sufficient conditions for a sequence to
be uniformly distributed mod 1. We use e(x) to abbreviate e2πix.

Weyl’s Equidistribution Criterion. Let (xn)n∈N be a sequence of real numbers.
The following are equivalent:

(i) (xn)n∈N is uniformly distributed mod 1;
(ii) For any continuous function f : [0,1]→C,

lim
N→∞

1
N

N∑
n=1

f ({xn})=
∫ 1

0
f (x) dx;

(iii) For every k ∈Z\{0},

lim
N→∞

1
N

N∑
n=1

e(kxn)= 0.

Proof of (i) =⇒ (ii). Suppose (xn)n∈N is uniformly distributed mod 1. Letting 1[a,b)
denote the indicator function of the interval [a.b), we can rewrite (3.1.1) as

lim
N→∞

1
N

N∑
n=1

1[a,b)({xn})= (b−a). (3.2.1)

Let f : [0,1] → C be continuous. Since continuous functions on compact sets are
uniformly continuous, for every ε> 0 there exists M ∈N such that for all x, y ∈ [0,1]
we have

|x− y|⩽ 1
M =⇒ | f (x)− f (y)|⩽ ε. (3.2.2)

Let yj = j
M , j = 0,1, . . . , M, and define

fM(x)=
M−1∑
j=0

f (yj)1[yj ,yj+1)(x).

It follows from (3.2.2) that for any x ∈ [0,1] we have | f (x)− fM(x)|⩽ ε. In particular,
| f ({xn})− fM({xn})|⩽ ε for all n ∈N. Therefore

limsup
N→∞

∣∣∣ 1
N

N∑
n=1

f ({xn})− 1
N

N∑
n=1

fM({xn})
∣∣∣⩽ ε. (3.2.3)

Using (3.2.1) we see that

lim
N→∞

1
N

N∑
n=1

fM({xn})=
M∑
j=0

f (yj)(yj+1 − yj).
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Since the right hand side of the above equation is a (left) Riemann sum of f over
the interval [0,1] with respect to the partition induced by y0, y1, . . . , yM , we conclude
that

lim
M→∞

lim
N→∞

1
N

N∑
n=1

fM({xn})= lim
M→∞

M∑
j=0

f (yj)(yj+1 − yj)=
∫ 1

0
f (x) dx.

Therefore, taking the limit as M →∞ in (3.2.3) yields

limsup
N→∞

∣∣∣ 1
N

N∑
n=1

f ({xn})−
∫ 1

0
f (x) dx

∣∣∣⩽ ε.

Since ε > 0 was chosen arbitrarily, this shows that the limit of 1
N

∑N
n=1 f ({xn}) as

N →∞ exists and equals
∫ 1

0 f (x) dx.

Proof of (ii) =⇒ (iii). Observe that the function x 7→ e(kx) is continuous and for
k ̸= 0 we have

∫ 1
0 e(kx) dx = 0. Since e(k{xn}) = e(kxn) for all n, we see that (iii)

follows from (ii) by choosing f (x)= e(kx).

For the proof of the implication (iii) =⇒ (i) we rely on a classical result from
analysis. Given a topological space X let C(X ) denote the space of all continuous
functions from X to C and let ∥ f ∥∞ = supx∈X | f (x)| be the supremum norm.

Stone-Weierstrass Theorem. Suppose X is a compact Hausdorff space and A is
a subalgebra of C(X ) closed under complex conjugation and containing a non-zero
constant function. Then A is dense in C(X ) (with respect to the supremum norm) if
and only if it separates points.

By a trigonometric polynomial on [0,1] we mean any function of the form

x 7→ c1e(k1x)+ . . .+ cℓe(kℓx)

for ℓ ∈N, c1, . . . , cℓ ∈C, and k1, . . . ,kℓ ∈Z. The following is a well-known corollary of
the Stone-Weierstrass Theorem.

Corollary 53. Any continuous function f : [0,1]→C satisfying f (0)= f (1) can be
approximated in supremum norm by trigonometric polynomials.

Proof. By identifying the unit interval [0,1) with the torus T = R/Z, we can iden-
tify any continuous function f : [0,1] →C satisfying f (0) = f (1) with a continuous
function on T. In particular, we can view trigonometric polynomials as a functions
on T.

Note that the set of all trigonometric polynomials is closed under pointwise
addition, pointwise multiplication, complex conjugation, and scalar multiplication.
Therefore, it forms a subalgebra of C(T) closed under complex conjugation. This
subalgebra also contains all non-zero constant functions and separates points.
Indeed, the former is obvious and the latter follows from the observation that the
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function x 7→ e(x) itself already separates points in T, because for any x, y ∈ [0,1)
with x ̸= y one has e(x) ̸= e(y). It thus follows from the Stone-Weierstrass Theorem
that any continuous function on T can be apprximated in supremum norm by
trigonometric polynomials. Consequently, any continuous function f : [0,1] → C

satisfying f (0) = f (1) can be approximated in supremum norm by trigonometric
polynomials.

Proof of (iii) =⇒ (i). It suffices to show that for any 0⩽ a⩽ b ⩽ 1 one has

liminf
N→∞

|{1⩽ n⩽ N : {xn} ∈ [a,b)}|
N

⩾ (b−a). (3.2.4)

Indeed, assuming that (3.2.4) holds, we have

|{1⩽ n⩽ N : {xn} ∈ [a,b)}|
N

= 1− |{1⩽ n⩽ N : {xn} ∈ [0,a)}|
N

− |{1⩽ n⩽ N : {xn} ∈ [b,1)}|
N

and hence

limsup
N→∞

|{1⩽ n⩽ N : {xn} ∈ [a,b)}|
N

⩽ 1− (a−0)− (1−b)= (b−a). (3.2.5)

Then (3.2.4) and (3.2.5) together prove that (xn)n∈N is uniformly distributed mod 1.
For the proof of (3.2.4), let ε> 0 be arbitrary. By approximating 1[a,b)(x) from

below, we can find a continuous function f : [0,1]→ [0,1] supported on [a,b) and with∫ 1
0 f (x) dx⩾ (b−a)−ε. Without loss of generality, we can assume that f (0)= f (1)= 0.

Using Corollary 53, we can now find a trigonometric polynomial P(x)= c1e(k1x)+
. . .+ cℓe(kℓx) such that ∥ f −P∥∞ ⩽ ε. It follows that∣∣∣∫ 1

0
f (x) dx−

∫ 1

0
P(x) dx

∣∣∣⩽ ε (3.2.6)

as well as ∣∣∣ 1
N

N∑
n=1

f ({xn})− 1
N

N∑
n=1

P({xn})
∣∣∣⩽ ε, ∀N ∈N. (3.2.7)

Using 1[a,b)(x)⩾ f (x) for all x ∈ [0,1], we have

liminf
N→∞

|{1⩽ n⩽ N : {xn} ∈ [a,b)}|
N

⩾ liminf
N→∞

1
N

N∑
n=1

f ({xn}). (3.2.8)

Next, it follows from (iii) that for all k ∈Z and c ∈C,

lim
N→∞

1
N

N∑
n=1

ce(k{xn})=
{

c, if k = 0,
0, otherwise.

On the other hand, a straightforward calculation reveals∫
ce(kx) dx =

{
c, if k = 0,
0, otherwise.
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This shows that for all k ∈Z and c ∈C,

lim
N→∞

1
N

N∑
n=1

ce(k{xn})=
∫

ce(kx) dx.

Since P(x)= c1e(k1x)+ . . .+ cℓe(kℓx), it also follows that

lim
N→∞

1
N

N∑
n=1

P({xn})=
∫ 1

0
P(x) dx. (3.2.9)

Putting together (3.2.7) and (3.2.9), we get∣∣∣liminf
N→∞

1
N

N∑
n=1

f ({xn})−
∫ 1

0
P(x) dx

∣∣∣⩽ ε.

Combining this with (3.2.7) gives

liminf
N→∞

1
N

N∑
n=1

f ({xn})⩾
∫ 1

0
f (x) dx−2ε. (3.2.10)

Finally, using
∫ 1

0 f (x) dx⩾ (b−a)−ε, it follows from (3.2.8) and (3.2.10) that

liminf
N→∞

|{1⩽ n⩽ N : {xn} ∈ [a,b)}|
N

⩾ (b−a)−3ε.

Given that ε> 0 can be made arbitrarily small, (3.2.4) follows.

The following theorem was proved in 1909 and 1910 separately by Hermann
Weyl, Wacław Sierpiński and Piers Bohl, and variants of it continue to be studied to
this day.

Weyl’s Linear Equidistribution Theorem. For any irrational number α the
sequence (nα)n∈N is uniformly distributed mod 1.

Proof. In view of Weyl’s Equidistribution Criterion, it suffices to show that for every
k ∈Z\{0} we have

lim
N→∞

1
N

N∑
n=1

e(knα)= 0.

Taking e(kα) = λ, we see that e(knα) = λn and hence 1
N

∑N
n=1 e(knα) = 1

N
∑N

n=1λ
n.

Note also that kα is not an integer, because α is irrational, and hence λ ̸= 1. Since∑N
n=1λ

n is a geometric sum, it can be calculated explicitly as

N∑
n=1

λn =λ
(1−λN

1−λ
)
.

Therefore ∣∣∣ 1
N

N∑
n=1

e(knα)
∣∣∣= ∣∣∣ 1

N

N∑
n=1

λn
∣∣∣= ∣∣∣ λ

N

(1−λN

1−λ
)∣∣∣⩽ 2

N|1−λ| .
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Since the rightmost expression in the above equation converges to zero as N →∞,
we are done.

3.3. Uniform Distribution in Metric Spaces

Recall, a metric space is a pair (X ,dX ) where X is a set and dX : X × X → [0,∞)
is a function satisfying the following axioms of a metric:

• (Positivity). x ̸= y ⇐⇒ dX (x, y)> 0.
• (Symmetry). dX (x, y)= dX (y, x).
• (Triangle inequality). dX (x, z)⩽ dX (x, y)+dX (y, z).

The Borel σ-algebra, denoted by BX , is the smallest σ-algebra on X containing all
open balls in X . If X is a compact metric space then any Borel probability measure
µ on X (i.e., any probability measure defined on the Borel σ-algebra BX ) is a Radon
measure, which means for all A ∈BX we have

(inner regularity) µ(A)= sup{µ(K) : K ⊆ A compact},
(outer regularity) µ(A)= inf{µ(U) : U ⊇ A open}.

The same statement is true if instead of a compact metric space one has a locally
compact and σ-compact Hausdorff space, but for the purposes of this course it is
enough to restrict our attention to compact metric spaces.

Definition 54. Let µ be a Borel probability measure on a compact metric space. A
sequence (xn)n∈N of points in X are said to be uniformly distributed according to µ
if for every continuous function f : X →C one has

lim
N→∞

1
N

N∑
n=1

f (xn)=
∫

X
f dµ.

A (Borel measurable) function f : X → C is called Riemann integrable with
respect to µ if the set of discontinuities of f has zero measure with respect to µ.
A (Borel) set A ⊆ X is called Jordan measurable with respect to µ if its boundary
∂A = A\A◦ has zero measure with respect to µ. It follows right away from the
definition that a set is Jordan measurable if and only if its indicator function is
Riemann integrable.

The following proposition can be viewed as a variant of Weyl’s Equidistribution
Criterion for arbitrary compact metric spaces. The idea behind the proof is also
similar and omitted from these notes.

Proposition 55. Let µ be a Borel probability measure on a compact metric space
(x,dX ) and (xn)n∈N a sequence of points in X . The following are equivalent:

(i) (xn)n∈N is uniformly distributed according to µ;
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(ii) For any Riemann integrable function f : X →C,

lim
N→∞

1
N

N∑
n=1

f (xn)=
∫

X
f dµ;

(iii) For every Jordan measurable set A ⊆ X

d({n ∈N : xn ∈ A})=µ(A).

Examples
Prime Numbers. The Prime Number Theorem states that

{p ⩽ N : p prime}| ∼ N
log(N)

.

The prime number theorem in arithmetic progressions, also known as Dirichelt’s
prime number theorem, asserts that for any coprime positive integers q, r ∈N one
has

{p ⩽ N : p ≡ r mod q, p prime}| ∼ 1
ϕ(q)

N
log(N)

,

where ϕ is Euler’s totient function. It follows that the sequence of prime numbers
appears with equal frequency in all coprime residue classes modulo q. In other
words, if p1 < p2 < p3 < . . . is an increasing enumeration of the primes then the se-
quence (pn mod q)n∈N is uniformly distributed according to the normalized counting
measure on (Z/qZ)∗ = {0⩽ r < q : gcd(q, r)= 1}.





Chapter 4

Birkhoff’s Pointwise Ergodic
Theorem

The Ergodic Theorems, both mean and pointwise, embody one the main principles
of ergodic theory, specifically that time-averages are equal to space-averages:

lim
N→∞

1
N

N−1∑
n=0

f (Tnx)︸ ︷︷ ︸
time−averages

=
∫

f dµ .︸ ︷︷ ︸
space−averages

4.1. The Maximal Inequality and the Maximal
Ergodic Theorem

In measure theory, Markov’s inequality states that if (X ,A ,µ) is a measure
space, f : X →R a measurable function, and ε> 0 then

µ
({

x ∈ X : | f (x)|⩾ ε
})

⩽
1
ε

∫
| f | dµ.

Applying Markov’s inequality to the ergodic average 1
N

∑N−1
n=0 f (Tnx) and using the

triangle inequality yields

µ
({

x ∈ X :
∣∣∣ 1
N

N−1∑
n=0

f (Tnx)
∣∣∣⩾ ε

})
⩽

1
ε

∫
| f | dµ. (4.1.1)

The following results, called the Maximal Ergodic Theorem, provides a signifi-
cant strengthening of (4.1.1) and can be viewed as a uniform version of Markov’s
inequality for ergodic averages.
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Maximal Ergodic Theorem. Let (X ,A ,µ,T) be a measure preserving system.
For any real-valued f ∈ L1(X ,A ,µ) and ε> 0 we have

µ
({

x ∈ X : sup
N⩾1

∣∣∣ 1
N

N−1∑
n=0

f (Tnx)
∣∣∣⩾ ε

})
⩽

1
ε

∫
| f | dµ. (4.1.2)

The proof of the Maximal Ergodic Theorem hinges on a technical result called
the maximal inequality.

Maximal Inequality. Let (X ,A ,µ,T) be a measure preserving system. For f ∈
L1(X ,A ,µ) a real-valued function define S0 = 0 and

Sm(x)=
m−1∑
n=0

f (Tnx), m⩾ 1,

and let FN(x)=max0⩽m⩽N Sm(x) for all x ∈ X . Then∫
{x∈X :FN (x)>0}

f dµ⩾ 0

for all N ⩾ 1.

Proof. First, observe that FN(x)⩾ Sm(x) for all m = 0,1, . . . , N, and therefore

FN(Tx)+ f (x)⩾ Sm(Tx)+ f (x)= Sm+1(x).

Hence

FN(Tx)+ f (x)⩾ max
1⩽m⩽N

Sm(x), ∀x ∈ X . (4.1.3)

Since S0 = 0 we have

FN(x)=
{

max1⩽m⩽N Sm(x), if FN(x)> 0,
0, otherwise.

So if P = {x ∈ X : FN(x)> 0} then (4.1.3) implies

FN(Tx)+ f (x)⩾ FN(x), ∀x ∈ P.

Thus,∫
P

f dµ⩾
∫

P
FN(x) dµ−

∫
P

FN(Tx) dµ

=
∫

X
FN(x) dµ−

∫
P

FN(Tx) dµ (since FN(x)= 0 for x ∉ P)

⩾
∫

X
FN(x) dµ−

∫
X

FN(Tx) dµ (since FN(x)⩾ 0 for all x ∈ X )

= 0. (since T is measure-preserving)
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Proof of the Maximal Ergodic Theorem. By decomposing f into f = f++ f−, where
f+ = f ·1{x: f (x)>0} and f− = f ·1{x: f (x)<0}, and treating each component separately, we
can assume without loss of generality that f is non-negative. By applying the
Maximal Inequality to the function f (x)−ε we obtain∫

PM

f (x)−ε dµ⩾ 0 (4.1.4)

where PM = {x ∈ X : sup1⩽N⩽M
1
N

∑N−1
n=0 f (Tnx)> ε}. Let

P =
{

x ∈ X : sup
N⩾1

1
N

N−1∑
n=0

f (Tnx)⩾ ε
}

and note that P =⋃
M∈NPM . Thus (4.1.4) and the dominated convergence theorem

imply ∫
P

f (x)−ε dµ⩾ 0. (4.1.5)

From (4.1.5) we deduce that
∫

P f dµ⩾ εµ(P). Since
∫

P f dµ⩽
∫ | f | dµ, the claim

follows.

4.2. The Pointwise Ergodic Theorem

Pointwise Ergodic Theorem (General Case). Let (X ,A ,µ,T) be a measure pre-
serving system. For every f ∈ L2(X ,A ,µ) we have

lim
N→∞

1
N

N−1∑
n=0

f (Tnx)= finv(x) for µ-a.e. x ∈ X ,

where finv is as guaranteed by (2.2.3).

Proof. Let L denote the space of all real-valued f ∈ L2(X ,A ,µ) for which the limit

lim
N→∞

1
N

N−1∑
n=0

f (Tnx)

exists for µ-almost every x ∈ X . Our goal is to show that L = L2(X ,A ,µ).
Clearly, L is closed under finite linear combinations and contains Hinv. Thus,

to conclude L = L2(X ,A ,µ) it suffices to show Herg ⊆ L , because Hinv ⊕Herg =
L2(X ,A ,µ) by Theorem 46. Let f be an arbitrary element in Herg. Fix ε> 0, and
let h = g− g◦T be a coboundary with g ∈ L∞(X ,A ,µ) and

∫ | f −h| dµ⩽ ε2, which is
possible because coboundaries are dense in Herg. Applying the Maximal Ergodic



44 CHAPTER 4. BIRKHOFF’S POINTWISE ERGODIC THEOREM

Theorem to the function f −h yields

µ
({

x ∈ X : sup
N⩾1

∣∣∣ 1
N

N−1∑
n=0

f (Tnx)−h(Tnx)
∣∣∣⩾ ε

})
⩽

1
ε

∫
| f −h| dµ.

Using
∫ | f −h| dµ⩽ ε2 and replacing supN⩾1 with limsupN→∞ yields

µ
({

x ∈ X : limsup
N→∞

∣∣∣ 1
N

N−1∑
n=0

f (Tnx)−h(Tnx)
∣∣∣⩾ ε

})
⩽ ε. (4.2.1)

Since h = g− g ◦T is a coboundary with g ∈ L∞(X ,A ,µ), its ergodic average is
telescoping almost everywhere, giving

lim
N→∞

1
N

N−1∑
n=0

h(Tnx) = 0, for µ−a.e. x ∈ X .

So (4.2.1) is equivalent to

µ
({

x ∈ X : limsup
N→∞

∣∣∣ 1
N

N−1∑
n=0

f (Tnx)
∣∣∣⩾ ε

})
⩽ ε. (4.2.2)

Since ε was arbitrary, this implies that

lim
N→∞

1
N

N−1∑
n=0

f (Tnx) = 0, for µ−a.e. x ∈ X ,

proving that f ∈L as desired.

Pointwise Ergodic Theorem (Ergodic Case). Let (X ,A ,µ,T) be an ergodic mea-
sure preserving system. Then for every f ∈ L2(X ,A ,µ),

lim
N→∞

1
N

N−1∑
n=0

f (Tnx)=
∫

f dµ, for µ-a.e. x ∈ X .

4.3. Consequences of the Pointwise Ergodic
Theorem

Given a measure preserving system (X ,A ,µ,T), a set A ∈A , and a point x ∈ X ,
we call

R(x, A)= {n ∈N : Tnx ∈ A}

the set of visits of x to A. It describes the times at which the orbit of the point x
under the transformation T “visits” the set A.

The following result is a consequence of the Pointwise Ergodic Theorem. It tells
us that in ergodic systems generic points visit sets with the right frequency.
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Corollary 56. Let (X ,A ,µ,T) be a measure preserving system. The following are
equivalent.

(i) (X ,A ,µ,T) is ergodic.
(ii) For every A ⊆A with µ(A)> 0 and almost every x ∈ X the set of visits R(x, A)

is non-empty.
(iii) For every A ⊆A with µ(A)> 0 and almost every x ∈ X the set of visits R(x, A)

has density µ(A), i.e.,

lim
N→∞

|{1⩽ n⩽ N : Tnx ∈ A}|
N

=µ(A).

Proof. The implication (i)=⇒ (iii) follows directly from the Pointwise Ergodic Theo-
rem. The implication (iii)=⇒ (ii) is immediate because sets with positive density are
always non-empty. Finally, we prove (ii)=⇒ (i) by contradiction. Assume (X ,A ,µ,T)
is not ergodic, which means there exists A ∈A that is invariant under T and sat-
isfies 0 < µ(A) < 1. Since the complement X\A has positive measure, it follows
from (ii) that there exists a set X ′ ⊆ X of full measure such that R(x, X\A) ̸= ;
for all x ∈ X ′. Since A has positive measure, the intersection X ′∩ A is non-empty.
In particular, there exists some x0 ∈ X ′∩ A. Since x0 ∈ X ′ we have R(x, X\A) ̸= ;,
but since x0 ∈ A and A is invariant, we have Tnx0 ∈ A for all n ∈ N and hence
R(x, X\A)=;. We have arrived at a contradiction.

Corollary 57. Let (X ,dX ) be a compact metric space, µ a Borel probability measure
on X , and T : X → X an ergodic measure preserving transformation. Then for µ-
almost every x ∈ X the orbit (Tnx)n∈N is uniformly distributed according to µ (see
Definition 54).

Proof. Let f1, f2, f3, . . . ∈ C(X ) be a sequence of continuous functions on X such that
{ f i : i ∈N} is a dense subset of C(X ) with respect to the supremum norm ∥.∥∞. By
thePointwise Ergodic Theorem, for every i ∈ N there exists a set of full measure
X i ⊆ X such that for all x ∈ X i,

lim
N→∞

1
N

N−1∑
n=0

f i(Tnx)=
∫

f i dµ. (4.3.1)

Let X ′ =⋂
i∈N X i and note that X ′ has full measure. Since (4.3.1) holds for all x ∈ X ′

and since any continuous function f ∈ C(X ) can be uniformly approximated by a
subsequence of ( f i)i∈N, we conclude that

lim
N→∞

1
N

N−1∑
n=0

f (Tnx)=
∫

f dµ

holds for all f ∈ C(X ) and all x ∈ X ′. This proves that the orbit of any point in X ′ is
uniformly distributed according to µ.
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